Страница 1

Классификацию кристаллогидратов можно вести по различным критериям:

1. По наличию связи структуры безводного вещества и кристаллогидрата

· фазы определенного состава - вид кристаллогидратов, у которых при удалении кристаллизационной воды происходит сжатие кристаллической решетки, поэтому структура безводного вещества и кристаллогидрата не связанны между собой. К данному классу относятся кристаллогидраты многоосновных кислот, оснований и клатратов.

· неопределенного состава – вид кристаллогидратов, у которых процесс удаления воды может быть осуществлен без существенных изменений в кристалле. Это возможно при наличии в кристалле достаточного количества свободных промежутков, каналов (чтобы уместились молекулы воды). У веществ этого класса может происходить обратимая гидратация и дегидратация. Примерами таких веществ являются цеолиты [32].

2. По количеству молекул воды входящих в формульную единицу кристаллогидрата

· Существует кристаллогидраты, в которых на одну молекулу или частицу гидратированного вещества приходится 1,2,3,4,5,6,7,8,9,10,12 молекул воды.

· Но наиболее распространенными являются кристаллогидраты с 1,2,4,6,8 молекулами воды.

· Для многих веществ известны кристаллогидраты различного состава.

- MgCl2∙ nH2O где n= 2,4,6,8,12.

- CaCl2∙ nH2O где n= 1,2,4,6,8.

- NaOH∙ nH2O где n=1,2,3,4,6,8.

- H2SO4∙ nH2O где n= 1,2,4,6,8.

3. По природе соединения участвующего в образовании кристаллогидратов

* Органическое

* Неорганическое

3. По агрегатному состоянию гидратообразователя при н.у.

* Твердое (соли)

* Газ (предельные у/в, С12, Н2 S, Аг, Хе, SО2)

* Жидкость (серная кислота, этиловый спирт)

5. Класс соединений

* Кислоты (H2SO4.H2O)

* Основания (NaOH.H2O)

* Соли (ZnSO4·7H2O,MnSO4·7H2O)

6. Температурная устойчивость

· Если кристаллизационная вода удерживается Ван-дер-Ваальсовыми силами, то такие вещества стабильны при температурах ниже нуля (клатраты)

· Если кристаллизационная вода удерживается в кристаллогидрате слабыми межмолекулярными связями, то она легко удаляется при нагревании:

Na2CO3· 10H2O = Na2CO3 + 10H2O (при 120 ° С);

K2SO3· 2H2O = K2SO3 + 2H2O (при 200 ° С);

· Если же в кристаллогидрате связи между молекулами воды и другими частицами близки к химическим, то такой кристаллогидрат или дегидратируется (теряет воду) при более высокой температуре, например:

Al2(SO4)3 · 18H2O = Al2(SO4)3 + 18H2O (при 420 ° С);

СoSO4 · 7H2O = CoSO4 + 7H2O (при 250 ° С);

или при нагревании разлагается с образованием других химических веществ, например:

2{FeCl3· 6H2O} = Fe2O3 + 6HCl + 9H2O (выше 250 ° С);

2{AlCl3· 6H2O} = Al2O3 + 6HCl + 9H2O (200 – 450 ° С) [14].

7. По состоянию воды в гидратах

· Псевдогидраты - это соединения, в которых часть молекул кристаллизационной воды образуют гидроксид ионы или ионы гидроксония (HClO4·H2O = H3O·ClO4 , Sr(BO2)2·4H2O = Sr[B(OH)4]2) Воду, входящую в состав псевдогидратов называют конституционной [39].

* молекулы воды изолированы друг от друга. Атомы кислорода в воде координируются вокруг центрального иона: CuCl2∙ 2H2O, CoCl2∙2H2O (Приложение 2, Рис 3).

* Внутрисферные кристаллогидраты – молекулы кристаллизационной воды удерживаются благодаря ковалентной связи с катионом [Al(H2O)6 ]Cl3, [Mg(H2O)6]Cl2 (Приложение 2, Рис 1).

* Смешанные кристаллогидраты – кристаллизационная вода удерживается за счет образования водородных связей и донорноакцепторного взаимодействия. К данной группе можно отнести купоросы (CuSO4·5H2O или [Cu(H2O)4]SO4·H2O), пятая молекула воды связывается именно водородными связями (Приложение2, Рис 2) [2].

Страницы: 1 2