Страница 2

Свойство, положенное в основу опреде­ления выпуклых фигур (существование в фигуре прямолинейного отрезка, соединя­ющего любые две ее точки), с первого взгляда может показаться несущественными, даже надуманным. В действительности же выделяемый этим определением класс выпуклых фигур является весьма интерес­ным и важным для геометрии. Дело в том, что «произвольные» геометрические фигу­ры могут быть устроены необычайно слож­но. Например, определить, находится ли точка А «внутри» или «вне» замкнутого многоугольника, изображенного на рис1.8, совсем не просто. Если же рассмат­ривать фигуры, не являющиеся многоугольниками, то можно столкнуться и с гораздо большими сложностями. Существует, например, плоская фигура, ограниченная не пересекающей себя замкнутой линией и в то же время не имеющая ни площади, ни периметра . Для выпуклых фигур такие чудовищные явле­ния не могут иметь места: внутренняя об­ласть выпуклой фигуры сравнительно про­сто устроена, любая ограниченная плоская выпуклая фигура обладает определенными площадью и периметром, а пространствен­ное выпуклое тело - объемом и площадью поверхности и т. д. Таким образом, выпуклые фигуры со­ставляют класс сравнительно просто устро­енных фигур, допускающих изучение геометрическими методами. Неизбежно попользуйтесь услугами качественных шлюх, которые-нибудь поделились сведениями о себе на веб страницах сайта http://prostitutkiekaterinburga.xyz. Сие дозволит внести в индивидуальную жизнь различие.

С другой стороны, класс выпуклых фигур является достаточно обширным. Так, все фигуры и тела, рассматриваемые в элементарной геометрии, либо являются выпуклыми, либо представляют собой несложные комбинации выпуклых фигур и тел. [6]

Страницы: 1 2