Страница 1

Процесс доказательства теорем и геометрии выражает связь единичных суждений (чертеж) и общих (использование общих свойств фигур) поэтому при обучении доказательствам для формирования правильного представления о проблематичном характере того или иного суждения следует применять на каждом шаге вопросы “Почему?”, “На каком основании?”

В курсе планиметрии обучение доказательствам проводится конкретно-индуктивным методом. Так как ученики в курсе геометрии, по мнению Шохор-Троцкого, занимаются преимущественно решением задач. Теоремы они доказывают только такие, которые не принадлежат к числу очевидных для них и которые не требуют слишком тонких рассуждений. Поэтому целесообразно в некоторых случаях предлагать учащимся для решения задачи абстрактного характера, подготавливающие самостоятельное формирование или доказательство теорем.

Например:

установить зависимость между сторонами в треугольнике; или свойства биссектрисы угла при вершине равнобедренного треугольника эмпирически.

В процессе обучения у школьников должно быть сформировано следующее понимание термина “доказательство”:

1)допускаются истинными некоторые отношения и факты (которые составляют условие теорем);

2)от условия к заключению строится логическая последовательная цепочка предложений, каждое из них должно быть обосновано с помощью суждений, выраженных в условии, определений известных понятий, аксиом или ранее доказанных утверждений;

3)заключение является последним звеном в цепочке этих логически расположенных предложений.

Например:

в курсе математики 5-6 классов этому способствуют задачи с таким содержанием: “Дополнить приведённое доказательство математических утверждений, выполняя указанные выше требования, предъявляемые к математическим доказательствам”.

“Если a:b=c, то a=bc. Доказать”

Условие: a:b=c. Заключение: a=bc.

Предложение

обоснование

1)a:b=c

2)a=bc

1) условие

2) почему?

В школьном обучении некоторые фрагменты математической теории излагаются содержательно (неформально), поэтому доказательство также содержательны, т.е. в них используются обычные рассуждения, а правила логического вывода не фиксируются. Среди таких правил можно выделить:

1)правило заключения: P; “если P, то Q” - вывод: “Q”.

2)правило введения конъюнкции: P; Q – вывод “P и Q”.

3)правило силлогизма: “если P, то Q”; “если Q, то R” - вывод “если P, то R”.

4)правило отрицания: “если A, то B”, “не B” - вывод “не А”.

5)правило контрапозиции: “если A, то B” - вывод “если не B, то не A”.

6)правило расширенной контрапозиции: “если A и B, то C” - вывод “если A и не С, то не B”.

7)Сведение к абсурду – “если Г, А=>B”, “Г, А=>не B” - вывод “Г=> не А”, где Г – список посылок.

Правило контрапозиции и сведение к абсурду широко применяется в косвенных доказательствах, примером которого может служить доказательство от противного.

Косвенное доказательство некоторой теоремы Т состоит в том, что исходит из отрицания Т, называемого допущением косвенного доказательства и выводят из него ложное заключение применением правила сведения к абсурду.

Например:

если а||с, и b||с, то a||b. Допущение: a||c и b||c, но a не|| b. Согласно определению параллельных прямых получаем: если a не|| b => $с (сÎа Ù сÎb), поэтому по правилу введения конъюнкции: из а||c и b||c. $с (сÎа Ù сÎb) имеем: a||c и b||c и $с (сÎа Ù сÎb). Но по аксиоме параллельных прямых (из Т) неверно, что: a||c и b||c и $ с (сÎа Ù сÎb), т.е. из наших допущений вывели противоречие, которое и доказывает теорему.

Специальные формы косвенного доказательства:

1)доказательство методом исключения

: надо доказать предложение: “если B, то Q1”, иначе: Г, Р=>Q1: наряду с Q1 рассматриваются все остальные возможности, которые являются: аксиомой, определением, ранее доказанной теоремой или следствием из них. Затем доказывается, что каждая из остальных возможностей, кроме Q1, ведёт к противоречию.

Например:

если каждая плоскость, пересекающая прямую а, пересекает и прямую b, то эти прямые параллельны.

Требуется установить следование: “Г,Р” ® Q не ||; “Г” и "a (если a´a, a´b) Þ a||b.

Исходим из предложений: Q1:a||b; Q2:a´b; Q3: a-b – скрещиваются.

Допущение Q2:a´b даёт $a (a´a и ) (достаточно провести произвольную плоскость α через b, отличную от плоскости определяемой пересекающимися прямыми a и b) или: так как $a (a´a и ) <=> не для всякой плоскости a (если a´a, то a´b), получаем “если Q2, то ”: если a´b, то не для всякой a если a´a, то a´b).

Страницы: 1 2 3