Страница 8

Подмножества I и II классов исчерпывают все трехэлементные подмножества множества М, что означает:

=+.

Аналогичными рассуждениями получите равенство:

=+.

Убедитесь в справедливости последнего равенства, воспользовавшись формулой подсчета числа сочетаний без повторений.

II. Составим таблицу значений при различных значениях n и k. В таблицу 2 занесем значения =1, =1, =1, =1, =2, =1. Заполните остальные строки таблицы, используя свойство сочетаний.

Займемся изучением таблицы 2.

Первые и последние элементы любой строки равны 1, так как ==1. Это равенство будем считать верным и при n=0 (пустое множество своим единственным подмножеством имеет самое себя).

Любой другой элемент таблицы 2 согласно свойству сочетаний, на основании которого составлена таблица, равен сумме двух элементов предшествующей строки: стоящего непосредственно над ним и стоящего над ним слева.

Часто числа располагают в таблице иначе, так, что каждый элемент таблицы равен сумме двух чисел предшествующей строки, стоящих непосредственно над ним слева и справа. Тогда таблица принимает форму равнобедренного треугольника.

Исследованием свойств такой треугольной таблицы и применениями ее занимался выдающийся ученый Франции Блез Паскаль (1623 —1662). Поэтому рассматриваемую таблицу часто называют треугольником Паскаля. Хотя задолго до Паскаля этот треугольник встречался в работах итальянских и арабских математиков.

Отметим некоторые из свойств треугольника Паскаля.

1. Сумма чисел k-той строки равна 2k: ранее было доказано, что +++…+=2k.

Таблица 2

0

1

2

3

4

5

6

7

8

9

10

0

1

1

1

1

2

1

2

1

3

1

3

3

1

4

1

4

6

4

1

5

1

5

10

10

5

1

6

1

6

15

20

15

6

1

7

1

7

21

35

35

21

7

1

8

1

8

28

56

70

56

28

8

1

9

1

9

36

84

126

126

84

36

9

1

10

1

10

45

120

210

252

210

120

45

10

1

Страницы: 3 4 5 6 7 8 9 10 11 12 13